Departamento de Ciencias Naturales Sede de Occidente III Semestre 2018

Programa del Curso: MA0323 Métodos Numéricos

Datos Generales

Sigla: MA0323

Nombre del curso: Métodos Numéricos

Tipo de curso: Teórico

Número de créditos: 4 créditos

Número de horas semanales presenciales: 10 horas

Número de horas semanales de trabajo independiente del estudiante: 20 horas

Requisitos: MA0321 Cálculo Diferencial e Integral, MA0322 Álgebra Lineal.

Horario del curso:

Lunes y martes de 9:00 a.m. a 11:50 a.m. y de 1:00 p.m. a 2:50 p.m., San Ramón.

Datos de la Profesora:

Nombre: Melissa Cerdas Valverde.

Correo electrónico: anamelissa.cerdas@ucr.ac.cr

Descripción del curso

Una de las discusiones más interesantes de los últimos tiempos es la relación que existe entre la matemática y la computación. Algunos problemas físicos, por ejemplo, conducen a integrales donde el integrando es difícil o imposible de calcular de forma analítica, o no se conoce explícitamente la función y solo se tiene un conjunto de datos discretos de la misma, este tipo de situaciones son afrontados mediante los métodos numéricos.

Objetivos Generales

- 1. Reconocer en los métodos numéricos la herramienta que con frecuencia utiliza la Matemática Aplicada.
- 2. Aplicar los distintos métodos numéricos en la resolución de problemas.

Objetivos específicos

- 1. Resolver problemas mediante métodos numéricos, tomando en cuenta diferentes precisiones en las respuestas según el caso.
- 2. Aproximar raíces de funciones mediante el uso de métodos numéricos.
- 3. Aproximar funciones mediante el uso de técnicas de interpolación polinomial.
- 4. Calcular, numéricamente, integrales que no poseen representación analítica de sus primitivas.

- 5. Predecir los márgenes de error que se producen al utilizar métodos numéricos para la resolución de problemas.
- 6. Controlar los errores producto de las aproximaciones brindadas por los métodos numéricos.

Contenidos

- 1. Preliminares
- 2. Sistema numérico de punto flotante y error de máquina.
- 3. Solución de sistemas de ecuaciones lineales: eliminación gaussiana, factorización LU, método de pivote y métodos iterativos.
- 4. Solución de ecuaciones no lineales: método de bisección, método de punto fijo, método de Newton-Raphson y método de la secante.
- 5. **Iterpolación:** interpolación de Lagrange, interpolación de Newton, interpolación de Hermite e interpolación por trazador cúbico.
- 6. Diferenciación numérica y reglas de integración de Newton: Diferenciación numérica, reglas de integración de Newton-Cotes, integración compuesta, fórmula de sumación de Euler-MaClaurin e integración de Romberg.
- 7. Mejor aproximación de funciones en la norma 2.
- 8. Reglas de cuadratura de Gauss.

Metodología

Las clases serán presenciales con seciones de exposición magistral por parte de la profesora, donde se expone la teoría y los estudiantes toman sus notas respectivas. Paralelamente, los educandos pueden hacer las consultas pertinentes durante la clase.

Evaluación

Descripción	Porcentaje
Primer Parcial	30 %
Segundo Parcial	35 %
Tercer Parcial	35 %
Total	100 %

Consideraciones sobre la evaluación:

La nota final (NF) es la suma correspondiente de los porcentajes obtenidos en los tres exámenes parciales.

- 1. Si $67.5 \le NF$ el o la estudiante aprueba el curso.
- 2. Si $57.5 \le NF < 67.5$ el o la estudiante tiene derecho a realizar examen de ampliación.
- 3. Si NF < 57.5 el o la estudiante pierde el curso.

Los exámenes de reposición se harán de forma oral y estarán a cargo de un tribunal formado por tres profesores, incluyendo a la profesora del curso. No hay reposición de la reposición de ningún parcial.

Cronograma

Semana	Actividad	Observaciones
1	Preliminares. Sistema de numérico de punto flotante y error de máquina.	
2	Solución de sistemas de ecuaciones lineales.	
3	Solución de ecuaciones no lineales.	hasta aquí I parcial
4	Interpolación	I parcial
5	Iterpolación.	hasta aquí II parcial
6	Diferenciación numérica y reglas de integración de Newton.	II parcial
7	Diferenciación numérica y reglas de integración de Newton.	
	Mejor aproximación de funciones en la norma 2.	
8	Reglas de cuadratura de Gauss.	hasta aquí III parcial
9	III parcial, reposición y ampliación	

Fechas Importantes

	±
I Parcial	Martes 29 de enero a las 9:00 a.m.
II Parcial	Martes 12 de febrero a las 9:00 a.m.
III Parcial	Lunes 04 de marzo a las 9:00 a.m.
Reposición I,II,III parcial	Martes 05 de marzo a las 9:00 a.m.
Ampliación	Viernes 08 de marzo a las 9:00 a.m.

Bibliografía

- $1. \ \ \text{Biswa Nath Datta}. \ \ \textbf{Numerical Linear Algebra and Applications}. \ \ 2\text{nd ed}, \ \ \text{SIAM}, \ 2009.$
- 2. Endre Sülli and David Meyers. **An Introduction to Numerical Analysis**. Cambridge Unversity Press, 2006.
- 3. Richard L. Burden. **Análisis Numérico**. Grupo editorial México.