Universidad de Costa Rica

Sede de Occidente

Departamento Ciencias Naturales

Sección de Matemática

PROGRAMA CURSO: MA0560 COMPUTACIÓN Y MÉTODOS NUMÉRICOS

Il Semestre, 2016

Datos Generales

Sigla: MA0560.

Nombre del curso: Computación y Métodos Numéricos.

Tipo de curso: Teórico.

Número de créditos: 4 créditos.

Número de horas semanales presenciales: 4 horas.

Número de horas semanales de trabajo independiente del

estudiante: 8 horas. Requisitos: MA0550 Ecuaciones diferenciales

para Enseñanza de la Matemática. Correquisitos: No tiene.

Ubicación en el plan de estudio: VIII Ciclo.

Horario del curso: Martes 14:00 a 15:50 y Viernes 14:00 a 15:50.

Datos del Profesor

Nombre: Carlos M. Ulate R.

Correo electrónico: <u>carlos.ulate@ucr.ac.cr</u>

Horas consulta: martes 11:00 a 11:50. jueves de 11:00 a 11:50. viernes de 11:00 a 11:30, en la Coordinación de Docencia

1. Descripción del curso

Una de las discusiones más interesantes de los últimos tiempos es la relación que existe entre la enseñanza de la Matemática y la computación, como se afectan una a otra y en especial como será la enseñanza de la Matemática en el futuro, pensando en la utilización de las máquinas en su forma más apropiada en el aula.

2. Objetivo General

Que el estudiante de la enseñanza de la Matemática adquiera los conocimientos y destrezas necesarios, en el uso de los ordenadores con el propósito de que:

- A. Asuma una actitud crítica respecto a la Matemática necesaria de un mundo cada vez más informatizado.
- B. Reconozca en los métodos numéricos la herramienta que con frecuencia utiliza la Matemática aplicada.
- C. Reconozca la interrelación entre los métodos numéricos y los métodos analíticos.
- D. Vislumbre las posibilidades y ventajas del "aprender haciendo " y las formas de estas con la utilización del

ordenador.

E. Use el ordenador para explorar los resultados de los métodos numéricos.

3. Objetivos específicos

- A. Desarrollar y perfeccionar las habilidades para la resolución de problemas.
- B. Promover el pensamiento riguroso y la expresión precisa de escribir algoritmos que funcionen correctamente.
- C. Ejecutar el pensamiento analítico al subdividir los problemas en partes menores, y el de sintesis al construir procedimientos principales combinado con sub procedimientos.
- D. Reconocer la idea general de que uno puede inventar pequeños procedimientos que sirvan de material de construcción para elaborar soluciones a grandes problemas
- F. Reconocer más fácilmente, que raramente hay una única forma " óptima " de hacer algo, que dificilmente se da la solución a un problema la primera vez que se trata de resolverlo, que más bien, es un proceso de pensar, revisar y

depurar la solución cuando se obtienen los resultados deseados.

4. Contenidos

- -Introducción, reseña histórica, diagramas de flujo y algoritmos
- -The sleepwalkers, Arthur Koestler: Tico Brahe, Kepler.
- -Solución de ecuaciones no lineales: Bisección. Punto fijo.
- -Newton Raphson. Secante.
- -Interpolación
- -Interpolación de Lagrange. Interpolación de Newton.
- -Interpolación de Hermite. Interpolación por Spline.
- -Diferenciación y Reglas de Integración. Diferenciación Numérica.
- -Reglas de integración de Newton Cotes. Integración de Romberg.
- -Aproximación de funciones con polinomios Aproximación polinomial en la norma 2.
- -Reglas de Integración de Gauss. Cuadratura gaussiana.

5. Metodología

El curso contemplará principalmente una participación expositiva por parte del docente en la primera parte del curso, con la respectiva atención a las interrogantes que tengan los estudiantes en un momento específico. La segunda parte del curso estará a cargo de los estudiantes, para lo cual expondrán los temas previamente seleccionados.

6. Evaluación

Un Parcial 40 %

Exposiciones 30%

Proyecto Final 30% Total: 100%

Consideraciones sobre la evaluación

Si el estudiante obtiene una nota mayor o igual 7.0 gana el curso; si su nota es 6.0 ó 6.5 tiene derecho a realizar examen de ampliación el día 1 de diciembre

La fecha del parcial se programará por acuerdo entre los estudiante y el profesor.

7. Bibliografía

- 1. Scheld, Francis. Análisis Numérico. Libros McGaw-Hill de México, S.A. Colombia, 1972
- 2. Richard L. Burden, Análisis Numérico, Grupo editorial México.

- 3. David Kincaid, Análisis Numérico, McGraw-Hill, México.
- 4. Francis Sheid, Análisis Numérico, McGraw-Hill, México.
- 5. Errores y exactitud. Análisis Numérico, McGraw-Hill, México.
- 6. Peter Henrici. Elements of Numerical Analys , Wiley, USA.
- 7. G.I. Marchuk. Methods of numerical Mathematics ,Springer-Verlag , USA.
- 8. E.U. Cheney. Introduction to aproximation Theory, McGraw-Hill, New York.
- 9. N.S.Bakhvalov. Method Numerical, Mir, Moscow.
- 10. Elvis Hurtado. Introducción al análisis numérico, Universidad de Costa Rica.
- 11. Koestler, Arthur.Los sonámbulos, Consejo Nacional de Ciencia y Tecnología, Mexico.